
Chapter 5

ENVELOPE EQUATION

We often read that when the linear part of the space charge force is added to the linear

equation of motion, it produces an incoherent tune shift, which if large enough can place

individual particles onto low-order betatron resonant lines resulting in an instability.

This picture, although appealing, is very misleading. In fact, the resonant driving force

drives the beam to resonance only when the coherent space charge tune shift lands the

coherent betatron tune of the beam onto the resonance lines. We are going to show that

resonant driving force of any order will not a�ect an individual particle when the space

charge force shifts its betatron tune onto the resonance line of that order.

5.1 The Integer Resonance

In this section, we are going to study the e�ects on beam particles under the inuence

of errors in the dipoles. We will �nd that although the beam center is able to see the

force from the dipole errors, it will not see the self-�elds from the beam particles. On

the other hand, a single particle sees the self-�elds and has its betatron tunes shifted.

However, a single particle oscillating at an integer tune will be not be driven by the

dipole-error force. We shall follow a discussion by Baartman [1].

The integer resonance is driven by errors in the dipoles around the accelerator ring.

The transverse motion of a beam particle is governed by

d2X

d 2
+ �2

0xX = Fsc x + Fe x( ) (5.1)
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where

 =

Z s

0

ds

�0x�x(s)
(5.2)

is the transverse Floquet phase which advances by 2� per turn, X is the normalized

transverse o�set (actual o�set x divided by square root of the betatron function �x),

and �0x is the bare betatron tune. The force� due to errors in dipoles in the x-direction

is represented by Fe x( ), which is periodic in  and is X independent. The space charge

force Fsc x, if linear, can be written as

Fsc x = �2�0x��sc(X � hXi) ; (5.3)

where hXi is the transverse o�set of the center of charge of the beam and ��sc is the

incoherent space charge tune shift depicted in, for example, Eq. (4.24). The equation of

motion becomes

d2X

d 2
+ �2

0xX = �2�0x��sc(X � hXi) + Fe x( ) : (5.4)

Taking the average, we obtain the equation of motion for the center of the beam,

d2hXi
d 2

+ �2
0xhXi = Fe x( ) : (5.5)

The space charge term disappears, indicating that the motion of the center of charge

is not a�ected by the space charge self-force. Physically, the beam transverse motion

is rigid and therefore the center cannot see any change in the pattern of the space

charge self-�eld. In other words, there is no coherent dipole space charge tune shift.

However, we do see that the center of the beam is driven by the dipole force due to

lattice error. The beam will be unstable if the coherent tune �0x, or just bare tune here,

is equal to an integer. Another way of saying the same thing is that as the coherent tune

approaches an integer, the closed-orbit distortion, being kicked in the same direction

in every turn, increases without limit. To show this more clearly, let us write the

nth-harmonic component of the periodic lattice-error force as Fe x( ) = fne
in . The

particular solution of Eq. (5.5) is

hXi = fne
in 

�2
0x � n2

; (5.6)

�Here Fsc x and Fe x do not have the dimension of a force. They should be forces divided by

appropriate variables. But for simplicity, we just call them forces.
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which is indeed unstable when the �0x = n.

The incoherent motion is obtained by subtracting Eq. (5.5) from Eq. (5.4),

d2

d 2
(X � hXi) + ��2

0x + 2�0x��sc
�
(X � hXi) = 0 ; (5.7)

showing that an individual particle is making betatron motion about the center of the

beam with the incoherent betatron tune �incoh = �0s+��sc. It is important to notice that

the incoherent equation of motion contains no driving terms for the integer resonance.

Therefore, incoherent motion is not a�ected by dipole errors. This means that the

incoherent tune can be equal to an integer with no adverse e�ects. It is worth re-

emphasizing: A particle which is shifted by direct space charge to a tune of exactly an

integer, turn by turn sees the same dipole errors at the same betatron phase, and yet

is not even slightly a�ected compared with other particles which do not have an integer

tune. This is not due to space charge stabilizing the resonance, as claimed by Ref. [2],

because in this example of linear space charge, there is no incoherent tune spread to

generate Landau damping. The correct answer is simply no driving term for incoherent

motion.

This concept can be extended easily to any nonlinear space charge force. For the

ith particle, the equation of motion is

d2Xi

d 2
+ �2

0xXi =
X
j

0
Fij + Fe x ; (5.8)

where Fij is the force of the jth particle acting on the ith particle, and
P0

j implies a

summation over j but with j = i excluded. Thus,
P0

j Fij is just the space charge force on

the ith particle. We now take the average of Eq. (5.8) by summing over i, giving exactly

Eq. (5.5) again. This result is obtained because of Newton's third law: Fij = �Fji when
i 6= j. Subtracting Eq. (5.5) from Eq. (5.8), we arrive at the incoherent equation

d2

d 2
(X � hXi) + �2

0x (Xi � hXi) =
X
j

0
Fij : (5.9)

Again, there is no dipole driving force for the equation of incoherent motion. The space

charge self-force, being nonlinear, does not just reduce to a simple incoherent tune shift.

The incoherent tune will be di�erent for di�erent particle depending on its amplitude

and the transverse beam distribution. However, whatever the incoherent tune is, even

at an integer, the individual particle will not be a�ected by the dipole lattice error at

all.
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5.2 The K-V Equation

Now let us come to the errors in the quadrupoles. This force, denoted by XF ( ) is

responsible for the half-integer resonance. Sometimes it is also called the linear error

force, because quadrupoles are linear elements of the accelerator lattice. The equation

of transverse motion for a particle is

d2X

d 2
+ �2

0xX = �2�0x��sc(X � hXi) +XF ( ) ; (5.10)

where a linear space charge force �2�0x��sc(X � hXi) has been assumed. Coherent

motion is obtained by averaging Eq. (5.10),

d2hXi
d 2

+ �2
0xhXi = hXiF ( ) ; (5.11)

and the di�erence gives the incoherent motion

d2

d 2
(X � hXi) + ��2

0x + 2�0x��sc
�
(X � hXi) = (X � hXi)F ( ) : (5.12)

It appears in Eq. (5.12) that the incoherent motion is driven by the quadrupole-error

force so that the particle will experience an instability at the half integer. This conclusion

is incorrect, although there is nothing wrong with the derivation from Eqs. (5.10) to

(5.12). A quadrupole in the lattice will change the size of the particle beam and so

will the quadrupole-error force. The incoherent space charge tune shift depends on the

beam size, which is a function of the quadrupole error force XF ( ). Actually, the e�ect

of the quadrupole-error force inside the incoherent space charge tune shift just cancels

the quadrupole-error force on the right side of Eq. (5.12), leaving behind an incoherent

motion not a�ected by the quadrupole-error force. To demonstrate this, we need to

study the equation of motion governing the beam size or beam envelope.

The dipole coherent tune shifts are zero because the beam center does not experience

any variation of the forces between beam particles, when the beam is executing rigid

dipole oscillations as a whole. Thus, the space charge forces do not a�ect the restoring

force of rigid oscillation and therefore do not a�ect the dipole coherent tunes. However,

there are other collective modes of oscillation in a beam. Examples are the breathing

mode, where the transverse beam size expands and contract without the beam center

being moved, and the mode when the breathing in the two transverse directions are 180Æ
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out of phase. The restoring forces of these modes of oscillation do depend on the forces

between the beam particles. Thus, their frequencies of oscillation are a�ected by the

space charge forces. To study these modes, we need to resort to the equations of motion

governing the beam envelope.

The envelope equation was �rst derived by Kapchinsky and Vladimirsky [3] for a

coasting beam with uniform charge density and elliptical cross section. Later it was

generalized by Sacherer [4] to include any distribution when the beam envelope x̂ is

replaced by the rms beam size ~x =
p
hx2i of the beam. We are going to follow Sacherer's

approach.

Consider an ensemble of particles that obey the single-particle equations

x 0 = px ;

p 0x = Fx(x; s) ;
(5.13)

where x is the transverse o�set, p is the canonical momentum, and the prime denotes

derivative with respect to time s, the distance along the designed orbit of the accelerator.

The total forcey in the x-direction,

Fx(x; s) = Fsc x + Fext x ; (5.14)

includes the space charge self-force Fsc x and the external force Fextx. Averaging over

the particle distribution f(x; p; s), we obtain the equations of motion for the center of

the beam:
hxi0 = hpxi ;
hpxi0 = hFx(x; s)i = hFext xi : (5.15)

where the last equation follows from hFsc xi = 0 because of Newton's third law. Note

that the order of the averaging and di�erentiation with respect to s is immaterial and

can be interchanged if one wishes. For a linear machine, for example with only dipoles

and quadrupoles in the ring, the external force is linear. We can write Fext x = Kx(s)x,

and the equation of motion governing the center of the beam becomes

hxi00 +Kx(s)hxi = 0 ; (5.16)

which involves only �rst moments and is independent of the space charge force or the

detailed form of the beam distribution.

yWe call them forces, although Fx(x; s), Fsc x, and Fextx do not have the dimension of a force. Note

that they have di�erent dimension from the forces introduced in Eq. (5.1).
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The second moments satisfy the equations

hx2i0 = 2 hxx 0i = 2 hxpxi ;
hxpxi0 = hx 0pxi+ hxp 0xi = hp2xi �Kx(s)hx2i+ hxFsc xi ;
hp2xi0 = 2 hpp 0xi = �2Kx(s)hxpxi+ 2 hpxFsc xi :

(5.17)

Notice that this set of equations is not closed because hxFsc xi and hpFsc xi are usually
functions of the higher moments like hxni, hxnpxi, etc. As will be demonstrated below,

if the self-force is derived from the free-space Poisson equation, hxFsc xi depends mainly

on the second moments and very little, if at all, on the higher moments.

Let us introduce the rms emittance

Ex =
p
hx2i hp2xi � hxpxi2 : (5.18)

Using the rate of change in the second moments in Eq. (5.17), the rate of change of the

rms emittance along the accelerator is

E 0
x =

hxpxi hxFsc xi � hx2i hpxFsc xi
Ex

: (5.19)

Thus, the rms emittance is an invariant provided that the space charge force is linear,

or when it can be written as Fsc x = �(s) (x� hxi). However, if we assume that the rms

emittance is either time invariant or its time dependency is known a priori, hp2xi can be

expressed in terms of hx2i, hxpxi, and Ex. Then, the �rst two equations in Eq. (5.17)

form a closed set, and they can be combined to give

~x00 +K(s)~x� E2

x

~x3
� hxFsc xi

~x
= 0 ; (5.20)

where ~x =
phx2i is the rms beam size.

The space charge term has an interesting interpretation. If we de�ne the linear part

of the space charge force Fsc x as "(s)x, where "(s) is determined by minimizing at a

�xed time

D =

Z
["(s)x� Fsc x]

2 n(x; s)dx ; (5.21)

where the linear distribution is

n(x; s) =

Z
f(x; p; s)dp ; (5.22)
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and the phase-space distribution is f(x; px; s), then we obtain

"(s)x =
hxFsc xi

~x2
x : (5.23)

In other words, the rms envelope equation depends only on the linear part of the space

charge force determined by least square.

Finally, let us express the envelope equation in terms of the static electric �eld Ex of
the space charge self-force in the x-direction and put back all the missing factors. The

envelope equation in the mks units now reads

~x00 +K(s)~x� E2

x

~x3
� e

m3�2c2
hxExi
~x

= 0 ; (5.24)

where m is the mass of the beam particles. In the denominator, we have the Lorentz

factor �2 because of Newton's second law and the other 2 because of the presence of

the magnetic �eld of the beam in the laboratory frame, as demonstrated in Eqs. (4.23)

and (4.24).

5.2.1 One Dimension

Consider a very long beam traveling in the z-direction with very wide width in the y-

direction. The situation can be approximated by a one-dimensional beam having space

charge self-force only in the x-direction and we assume that its distribution is symmetric

with respect to the x = 0 plane. The static electric �eld Ex in the x-direction is given

by Poisson equation
@Ex
@x

=
e

�0
n(x; s) ; (5.25)

from which

Ex = e

�0

Z x

0

n(x0; s)dx0 : (5.26)

Here, n(x; s) is the particle distribution per unit volume. Therefore, when integrated

over x from �1 to +1, it is normalized to �, the particle density per unit area in the

y-z plane. Since the electric �eld is proportional to the fraction of particles it encloses

between �x, we must have Ex / 1=~x. Thus,

hxExi
~x

=
e

�0

Z 1

�1
x
n(x)

�
dx

Z x

0

n(x0)dx0

�Z 1

�1
x2
n(x)

�
dx

�1=2 =
e�

2�0
% ; (5.27)
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where we have de�ned the dimensionless parameter

% =

2

Z 1

�1
xh(x)dx

Z x

0

h(x0)dx0

�Z 1

�1
x2h(x)dx

�1=2 : (5.28)

We have introduced a new distribution function h(x) = n(x)=� so that �, the particle

number per unit area in the y-z plane, is factored out and h(x) is normalized to unity.

It is important to point out that while % is dimensionless, h(x) can be scaled to anything

that is convenient. For example, in a uniform distribution, we can choose the edges as

�1, and in a Gaussian distribution, we can choose the rms spread as 1. Substituting in

Eq. (5.24), the one dimensional envelope equation now becomes

~x00 +K(s)~x� E2

x

~x3
� 2�r0�

3�2
% = 0 ; (5.29)

where r0 = e2=(4��0mc
2) is the classical radius of the beam particles. Table 5.1 shows

the values of % for four distributions. We see that for a wide range of distributions that

are likely to be encountered, the variation of % is less then 2.3%. Thus the one dimension

rms envelope equation will be accurately described by Eq. (5.29) with % = 1=
p
3.

Table 5.1: The values of the dimensionless parameter % for a wide range of distri-

butions. They are all close to 1=
p
3.

Distribution h(x)
p
3%

Uniform

�
1

2
jxj � 1

0 jxj > 1
1.000

Parabolic

�
3

4
(1� x2) jxj � 1

0 jxj > 1
0.996

Gaussian 1p
2�
e�x

2=2 0.977

Hollow 1p
2�
x2e�x

2=2 0.987

For a uniform distribution in one dimension, the half widths of the beam is x̂ =
p
3~x.

The full emittance is �x = 3Ex, since we also have p̂x =
p
3
p
hp2xi. The envelope equation
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for the half beam width in one dimension becomes

x̂ 00 +K(s)x̂� �2x
x̂3
� 2�r0�

3�2
= 0 ; (5.30)

where % = 1=
p
3 has been substituted.

5.2.2 Two Dimensions

With the absence of cross-correlations and coupling terms, the rms envelope equations

in the two transverse directions are given by Eq. (5.24) and the two space charge terms

hxFsc xi and hyF sc yi depend on the particle distribution. It will be shown below that

hxF sc xi and hyF sc yi depend only on second moments if the distribution has the elliptical

symmetry

n(x; y; s) = n

�
x2

a2
+
y2

b2
; s

�
; (5.31)

which when integrated over x and y gives the linear particle density �. Corresponding to

this distribution, the static electric �eld in the x-direction at a �xed location s is given

by

Ex = eabx

2�0

Z 1

0

n(T )

a2 + u

du

D(u)
; (5.32)

where

D(u) =
p
(a2 + u)(b2 + u) (5.33)

and

T =
x2

a2 + u
+

y2

b2 + u
: (5.34)

The validity of Eq. (5.32) can be veri�ed by computing the divergence of the electric

�eld. We get
@Ex
@x

=
eab

2�0

Z 1

0

du

D(u)

�
n(T )

a2 + u
+

2x2n0(T )
(a2 + u)2

�
: (5.35)

Changing variable of integration from u to T ,

dT = �
�

x2

(a2 + u)2
+

y2

(b2 + u)2

�
du (5.36)

and noting that
d lnD(u)

du
=

1

2

�
1

a2 + u
+

1

b2 + u

�
; (5.37)
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we arrive at

~r� ~E =
eab

2�0

�Z 1

0

du

D(u)
2n(T )

d lnD(u)

du
�
Z u=1

u=0

dT
2n0(T )
D(u)

�
; (5.38)

The variable in the �rst integral can now be easily changed from u to T , and we obtain

~r� ~E =
eab

�0

Z u=1

u=0

dT

�
n(T )

D2

dD

dT
� n0(T )

D

�

= �eab
�0

Z u=1

u=0

dT
d

dT

h n
D

i
=

e

�0
n

�
x2

a2
+
y2

b2

�
;

(5.39)

as required by Gauss's law. In passing, we give also the electric potential

�(x; y) = �eab
4�0

Z 1

0

du

D(u)

Z T

0

dT 0 n(T 0) : (5.40)

Now we are ready to compute hxExi and hyEyi. By de�nition,

hxExi = eab

2�0�

Z 1

0

du

D(u)

Z 1

�1

x2dx

a2 + u

Z 1

�1
dy n(T )n

�
x2

a2
+
y2

b2

�
: (5.41)

This suggests the change of variables x and y to the circular coordinates r and �,

r cos � =
xp

a2 + u
; r sin � =

yp
b2 + u

�! dxdy

D(u)
= rdrd� : (5.42)

We also let

r02 =
x2

a2
+
y2

b2
= r2

�
a2 + u

a2
cos2 � +

b2 + u

b2
sin2 �

�
: (5.43)

The integration variable u is now changed to r0 with

2r0dr0 =
r2

a2b2
�
a2 sin2 � + b2 cos2 �

�
du ; (5.44)

with the integration limits u from 0 to1 changed to r to 1. All these changes convert

Eq. (5.41) to

hxExi = ea3b2

2��0�(a+ b)

Z 1

0

n
�
r2
�
2�rdr

Z 1

r

n
�
r02
�
2�r0dr0 ; (5.45)

where the integration over � has been performed with the help ofZ
2�

0

cos2 �

a2 sin2 � + b2 cos2 �
d� =

2�

b(a + b)
: (5.46)
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Note that the variables r and r0 carry no dimension. With the new de�ned function

Q(r) = ab

Z r

0

n
�
r02
�
2�r0dr0 with Q(1) = � ; (5.47)

Eq. (5.45) can be integrated to give

hxExi = ea

2��0�(a+ b)

Z 1

0

dr
dQ(r)

dr
[��Q(r)] =

ea�

4��0(a + b)
: (5.48)

Since ~x =
phx2i / a and ~y =

phy2i / b, we obtain the �nal rms envelope equation in

two dimension:

~x 00 +Kx(s)~x� E2

x

~x3
� r0�

3�2

1

~x+ ~y
= 0 ;

~y 00 +Ky(s)~y �
E2

y

~y3
� r0�

3�2

1

~x + ~y
= 0 : (5.49)

For a uniform distribution with elliptical symmetry in two dimensions, the half

widths of the beam are x̂ = 2~x and ŷ = 2~y. The emittance is �x;y = 4Ex;y, since we also

have p̂x;y = 2
phpx;yi. The envelope equation becomes

x̂ 00 +Kx(s)x̂� �2x
x̂3
� 4r0�

3�2

1

x̂ + ŷ
= 0 ;

ŷ 00 +Ky(s)ŷ �
�2y
ŷ3
� 4r0�

3�2

1

x̂+ ŷ
= 0 : (5.50)

These are just the well-known K-V equations. However, the rms envelope equations

depicted in Eq. (5.49) are not restricted to the uniform K-V distribution and are valid

for any distribution with elliptical symmetry.

Two comments are in order. First, the distribution with elliptical symmetry, rep-

resented by Eq. (5.31), is a very general distribution. Nearly all practical beam distri-

butions fall into this category. Therefore, Sacherer's conclusion that hxExi in Eq. (5.48)

does not involve moment higher than second order is remarkable. Second, the rate of

change of the beam emittance Ex, Eq. (5.19), depends on both hxExi and hpxExi, and
will vanish if both of them do not involve moments higher than second order. Unfortu-

nately, hpxExi does depend on moments of the beam which is higher than second order.

As a result, the emittance introduced in Eq. (5.18) is time dependent and this renders

the rms envelope equations not a closed system. The set of rms envelope equations is

only closed when the distribution is uniform. It can be shown that the rate of increase

of emittance is just proportional to the energy of the part of the space charge self-�eld

that is nonlinear [5, 6, 7].
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5.3 Collective Oscillations of Beams

5.3.1 One Dimension

The one-dimension envelope equation for uniform beam, Eq. (5.29), contains the external

focusing term Kx(s), which includes both the ideal quadrupole focusing force and the

gradient errors. We �rst eliminate the rapidly varying part of Kx(s) from the envelope

equation by introducing the Floquet phase advance  x, which increases by 2� each

revolution turn,

 x =

Z s

0

ds

�0x�x(s)
; (5.51)

where �0x is the bare tune and �x is the betatron function de�ned in the absence of the

space charge self-force. Next introduce the dimensionless half beam size

X̂ =
x̂p
�x�x

; (5.52)

where the full emittance �x, de�ned via Eq. (5.18),

�x = 3
p
hx2ihp2xi � hxpxi2 ; (5.53)

is a constant of motion because the distribution is now uniform and the space charge

force is therefore linear [see Eq. (5.19)]. The envelope equation for a uniform beam in

one dimension now becomes (Exercise 5.1)

d2X̂

d 2
x

+ �2
0xX̂ � �2

0x

X̂3
� 2�r0�

3�2

�2
0x�

3=2
xp
�x

= 0 : (5.54)

The last term on the right side depends on s through the betatron function �x. Because

�x is periodic in s or the phase advance  x, we can expand it as a Fourier series. The

oscillatory part is x independent and is therefore similar to the force due to dipole errors

which we have studied earlier in Sec. 5.1. Since it will drive only integer resonance and

we are interested in half-integer resonance only in this section, this oscillatory part is

discarded. The non-oscillatory part is related to the incoherent space charge tune shift

��sc x, or (Exercise 5.2)

2�0x��sc x = �2�r0�

3�2

�2
0x
��
3=2
xp
�x

; (5.55)
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where ��x is the betatron function averaged over the Floquet phase  and is equal to

R=�0x, with R being the radius of the accelerator ring. In terms of ��sc x, the one-

dimension envelope equation now takes the simple formz

d2X̂

d 2
x

+
�
�2
0x + 2�0x��s cosn x

�
X̂ � �2

0x

X̂3
+ 2�0x��sc x = 0 ; (5.56)

where we have included the part in K(s) that corresponds to quadruple gradient errors

as a force possessing nth harmonic and total stopband width ��s.

When space charge is absent, the static solution (s or  x independent) of the enve-

lope equation is just X̂ = 1. Here, static is just mathematically true for the normalized

beam size X̂. In fact, this solution is not physically static, because it corresponds to the

beam size

x̂ =
p
�x�x ; (5.57)

and �x is a function of s. We can also see how the normalization process simpli�es the

analysis of the envelope equation. The solution in Eq. (5.57) says nothing more than

the fact that
p
�x is the beam radius when the beam is matched to the lattice. In fact,

the envelope equation, Eq. (5.29), before normalizing, is the equation satis�ed by
p
�x.

In the presence of space charge, the `static' solution becomes

X̂ = 1 + �x; (5.58)

which can be solved as a power series in

�x =
��sc x
�0x

: (5.59)

We obtain

�x = ��x

2
+

3�2

x

8
+O ��3

x

�
: (5.60)

Since ��sc x < 0, the beam size is therefore larger due to the repulsive nature of the

space charge force. This can be viewed as an increase in the betatron function due to

space charge by

�x �! �x�0x
�0x +��sc x

: (5.61)

zThe incoherent space charge tune shift is negative. Many authors prefer to denote ��sc x as the

absolute value of the tune shift. In that convention, the sign in the last term on the right side of

Eq. (5.56) will be positive instead.
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Now we are ready to solve the envelope equation around the `static' solution, for which

we let

X̂ = 1 + �x + Æx( x) : (5.62)

Here, Æx represents the amplitude of oscillation of the beam width about the equilibrium

value 1+�x. We only need Æx to be in�nitesimal. Therefore, we perform the power series

expansion according to

Æx � �x � 1 ; (5.63)

and keep only the �rst order in Æx. We also require only an in�nitesimal driving force,

because this is what it needs to drive a particle into instability. Thus, we will consider

the width of the stopband ��s=�0x to be of the same order as Æx. This consideration

leads to the equation

d2Æx
d 2

x

+
�
4�2

0x + 6�0x��sc x
�
Æx = �2�0x��s cos n x : (5.64)

Thus the beam envelope oscillates with the natural coherent tune 2
�
�0x +

3

4
��sc x

�
, and

resonance occurs when

n2 = 4�2
0x + 6�0x��sc x or

n

2
� �0x � 3

4
j��sc xj = �x incoh +

1

4
j��sc xj : (5.65)

The incoherent tune �x incoh = �0x + ��sc x can therefore be depressed beyond the half-

integer n
2
by 1

4
j��sc xj, a quarter of the incoherent tune shift before hitting the resonance

as is illustrated in Fig. 5.1. Solution of Eq. (5.64) gives

X̂ = 1� ��sc x
2�0x

� 2�0x��s cosn x
4�2

0x + 6�0x��sc x � n2
; (5.66)

where only the lowest order of ��sc x=�0x has been included. Clearly, this solution reects

the resonance depicted in Eq. (5.65), although the solution is perturbative and is not

valid near the resonance. We also see the beam envelope oscillate and that represents

a quadrupole breathing mode, which is a coherent mode or collective mode because all

beam particles have to participate collectively to produce this pattern of motion. This

is in contrast to the incoherent motion, where a single beam particle executes betatron

oscillations regardless of what the rest are doing.

Now we are in the position to study whether the force due to quadrupole errors will

drive a single particle unstable at the half-integer resonance. Let us return to Eq. (5.12),

the equation of motion of a single particle, which we rewrite as

d2X

d 2
x

+
�
�2
0x + 2�0x��s cos n x

�
X + 2�0x��sc x

X

X̂
= 0 : (5.67)
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ν0x

ν0x ∆νsc x||νincoh =

∆νsc x||3
4

∆νsc x| 2
n1

Figure 5.1: Plot showing that the incoherent tune of a one-dimensional beam,

�incoh = �0x � j��scxj, can be depressed to pass the half-integer 1

2
n before the

coherent quadrupole tune �0x � 3

4
j��scxj reaches the half-integer instability.

where X and X̂ are, respectively, the x-coordinate of the particle and the beam half

width normalized by
p
�x�x. ��sc x, as given by Eq. (5.55), is the commonly quoted

incoherent space charge tune shift without consideration of the beam being driven by

the gradient errors of the quadrupole. The correct incoherent space charge tune shift is

actually given by ��sc x=X̂ (see Exercise 5.2). Since we are not interested in the rigid

motion of the beam, the beam center hXi can be set to zero. When the perturbative

solution X̂ of the beam envelope in Eq. (5.66) is substituted, Eq. (5.67) becomes

d2X

d 2
x

+(�0x +��sc x)
2X+2�0x��s cosn x

�
1 +

2�0x��sc x
4�2

0x + 6�0x��sc x � n2

�
X = 0 : (5.68)

where the non-resonant free oscillations have not been included. At the particle intensity

which shifts the betatron tune to half-integer, namely �0x+��sc x = n=2, the two terms

inside the square brackets cancel, and the single-particle equation of motion reduces to

d2X

d 2
x

+
�n
2

�2
X = 0 : (5.69)

We see that when the incoherent tune of a particle is shifted to half-integer, the driving

force due to gradient errors cancels exactly. Thus, no resonance occurs for the particle.

The above proof appears to be overly approximatedx. The reader can pursuit this

proof to another order of the incoherent tune shift.

xThe more accurate condition for envelope instability is �2
0x
� 3

2
j�0x��sc xj =

�
n

2

�2
. So the more

accurate condition for \incoherent resonance" is �2
0x
� 2 j�0x��sc xj =

�
n

2

�2
. Use of these conditions

make the driving term vanish to a more accurate degree.
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5.3.2 Two Dimensions

Similar to the one-dimensional case, we normalize the two-dimensional envelope equa-

tions with uniformly distributed elliptic cross section in the same way by introducing

the phase advances

 x =

Z s

0

ds

�0x�x(s)
and  y =

Z s

0

ds

�0y�y(s)
; (5.70)

and the dimensionless half beam radii

X̂ =
x̂p
�x�x

and Ŷ =
ŷp
�y�y

; (5.71)

where �0x and �0y are the bare tunes and �x and �x are the betatron functions in the

x and y directions, respectively, de�ned in the absence of the space charge self-force.

Equation (5.50) that governs the motion of the beam radii becomes

d2X̂

d 2
x

+
�
�2
0x + 2�0x��sx cosnx x

�
X̂ � �2

0x

X̂3
+ 2�0x��sc x

a+ b

aX̂ + bŶ
= 0 ;

d2Ŷ

d 2
y

+
�
�2
0y + 2�0y��sy cosny y

�
Ŷ � �2

0y

Ŷ 3
+ 2�0y��sc y

a+ b

aX̂ + bŶ
= 0 ;

(5.72)

where a =
p
�x ��x and b =

p
�y ��y are the beam radii de�ned through the average

betatron functions ��x and ��y,

��sc x = � 2�r0R
2

3�2�0xa(a + b)
and ��sc y = � 2�r0R

2

3�2�0yb(a+ b)
(5.73)

are the incoherent space charge tune shifts. We have also included the forces due to

gradient errors at harmonics nx and ny.

We �rst solve for the static beam radii

X̂ = 1 + �x and Ŷ = 1 + �y (5.74)

in terms of the incoherent tune shifts

�x =
��sc x
�0x

and �y =
��sc y
�0y

: (5.75)

Up to second order, we get

�x = ��x

2
+

�2

x

4
� �x�y

8
and �y = ��y

2
+

�2

y

4
� �x�y

8
: (5.76)
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Next, the in�nitesimal displacements Æx and Æy are included:

X̂ = 1 + �x + Æx and Ŷ = 1 + �y + Æy : (5.77)

The derivation becomes very lengthy and uninteresting. For the sake of simplicity, we

study the special case of a round beam with a = b and obtain the equations for small

amplitude oscillation:

d2Æx
d 2

x

+ (4 + 5�x) �
2

0xÆx � �2
0x�xÆy = �2�2

0x��sx cosnx x ; (5.78)

d2Æy
d 2

y

+ (4 + 5�y) �
2

0yÆy � �2
0y�yÆx = �2�2

0y��sy cosny y : (5.79)

This is just a set of driven coupled simple-harmonic oscillators. For a round beam, we

expect the incoherent space charge tune shifts in the two transverse directions to be

equal. The eigentunes � can be found by solving the eigenvalues of the matrix

 
4�2

0x + 5�0x��sc x ��0x��sc x
��0x��sc x 4�2

0y + 5�0x��sc x

!
; (5.80)

from which we get

�2 = 2
�
�2
0x + �2

0y

�
+ 5�0x��sc x �

q
4
�
�2
0x � �2

0y

�2
+ (�0x��sc x)

2 : (5.81)

When the two bare tunes are close so that j�0x � �0yj � j�0x��sc xj, the two coherent

tunes are

�2 =

(
4��2 � 4j�0x��sc xj
4��2 � 6j�0x��sc xj

or � �

8>>><
>>>:

2

�
�� � 1

2
j��sc xj

�
;

2

�
�� � 3

4
j��sc xj

�
;

(5.82)

where 2��2 = �2
0x + �2

0y. This represents that the two transverse directions are tightly

coupled. The eigenfunctions are � (Æx + Æy) for the upper solution and � (Æx � Æy) for

the lower solution. Thus, the upper solution is the symmetric breathing mode where

the oscillations are in phase in both transverse directions and the tune is �� � 1

2
j�sc xj.

The lower solution is the antisymmetric mode where the beam envelope oscillates out of

phase in the two transverse directions with tune � � 3

4
j�sc xj.
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If the tune split is large so that j�0x � �0yj � j�0x��sc xj, the oscillations in the

two transverse directions are almost uncoupled. The envelope oscillations in the two

transverse directions are just two independent oscillators. The two coherent tunes are

�2 =

(
4�2

0x � 5j�0x��sc xj
4�2

0y � 5j�0x��sc xj
or � �

8>>><
>>>:

2

�
�0x � 5

8
j��sc xj

�

2

�
�0y � 5

8
j��sc yj

�
:

(5.83)

Let us come back to the situation of no tune split. Suppose that the bare tunes

�0x � �0y � �� are �� above a half-integer or integer. We try to increase the beam

intensity. and the incoherent tune shift j��sc xj increases accordingly. We will �rst

meet with the condition 3

4
j��sc xj = �� and the antisymmetric mode becomes unstable.

However, the incoherent tune, �0x � j��sc xj has passed the half integer already by a

factor of 4

3
. The symmetric mode will meet with the half-integer and become unstable

much later when j��sc xj = 2��.

Similar to the one-dimensional case, the oscillatory solutions for the envelope radii

can be solved. When substituted back into the single-particle equations of motion, we

can verify that the driving force vanishes when the incoherent equations are at half

integers, showing that the incoherent motion of individual particles can have their tunes

right at half-integers without instability.

Other distributions can be analyzed in the same way. Notice that, for a round

beam, the space charge tune shift ��sc x in the last term of Eq. (5.72) is

��sc x = � Nr0
2�3�2�

= � Nr0
8�3�2�rms

; (5.84)

where N = 2�R� is the total number of particles in the beam, � is the full emittance of

the uniform distributed beam and �rms is the rms emittance. Now rewrite Eq. (5.84) as

��sc x =
1

2

�
� Nr0
4�3�2�rms

�
; (5.85)

where the square-bracketed term is the maximum incoherent space charge tune shift of

a bi-Gaussian distributed round beam. Thus what we need to remember is that the

factor ��sc x in the envelope equation represents one half of the maximum incoherent

space charge tune shift for bi-Gaussian distribution. We mentioned before that for the
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case of strong coupling, the tune depression of the antisymmetric mode is 3

4
j��sc xj and

the incoherent tune shift can exceed that needed for coincidence with a half integer

resonance by a factor of 4

3
. Now for the case of the bi-Gaussian distribution, the tune

depression of this mode becomes 3

4
� 1

2
of the maximum incoherent space charge tune

shift for the bi-Gaussian distributed beam, and therefore the incoherent tune can exceed

that needed for coincidence with a half-integer resonance by as much as a factor of 8

3
.

For this reason, we de�ne a parameter G, such that Eq. (5.84) can be written as

��sc x =
1

G

�
max incoherent
sp ch tune shift

�
: (5.86)

Then, the incoherent space charge tune shift for the distribution considered will exceed

the tune depression of a particular collective quadrupole mode G times better than if

the distribution is uniform.

If we neglect the time dependency of the emittances, the rms envelope equations,

Eq. (5.49), say that the space charge e�ects of all beams are the same if they have

the same rms widths and emittances. These beams are called equivalent beams. For

example, an equivalent uniform beam implies that the beam has the same rms dimensions

as a uniform beam.

5.4 Simulations

5.4.1 One Dimension

Baartman [1] performed simulations with up to 50,000 particles according to the equation

of motion:

x00 + �2
0
x = �xm�1 cos(n�) + Fsc : (5.87)

Here, the driving force leads to resonances whenever the tune � satis�es m� = n. The

space charge self-force Fsc on a particular particle in the simulations is simply equal to

an intensity parameter multiplied by the di�erence between the number of particles to

its left and to its right.

For a sextupole force (m = 3) and bare tune equals �0 = 2:45, the relevant resonance

is at n=m = 7=3 = 2:3333. We expect to see the beam in resonance when the coherent

tune �coh = �0 � C33j��scj = 7=3, where ��sc is the incoherent space charge tune shift



5-20 5. ENVELOPE EQUATION

Figure 5.2: (color) Plot of the rms size (thick curve at center) of the simulated

one-dimensional beam of Gaussian distribution as a function of the incoherent tune,

which is used here as a measure of the beam intensity. Obviously, there is no e�ect

on the beam when the incoherent tune crosses the 7/3 resonance. But the rms beam

size increases very suddenly when the incoherent tune reaches 2.3167 corresponding

to the 7/3 resonance of the coherent tune. See text for the other curves.

and C33 = 7=8 by solving the envelope equation in one dimension. This corresponds

to an incoherent space charge tune shift of j��scj = (2:45 � 2:333)=C33 = 0:1334 or

the incoherent tune of 2:45 � 0:1334 = 2:3167. The simulations were performed for

a beam with transverse Gaussian distribution. The results are plotted in Fig. 5.2 as

the fraction of particles inside a given betatron amplitude versus the incoherent tune

of the stationary beam of the same rms size. The incoherent tune is chosen because

it serves as a measure of the beam intensity. Larger incoherent tune implies lower

beam intensity. The thick curve in the center is the rms beam size. We clearly see

that it passes the incoherent tune of 7/3 with nothing happening. However, there is

a sharp threshold at the expected incoherent tune 2.3167. This veri�es the fact that

it is the coherent tune but not the incoherent tune that determines the arrival of a

resonance. The horizontal curves in the �gure represent the fraction of particles inside

a �xed emittance for the Gaussian distribution. They step downwards as particles are

driven to larger amplitudes. The stepdown occurs when a horizontal curve meets the

curve connecting the + symbols. These + symbol represent the emittance at which the
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incoherent tune is on resonance. If we examine the �gure more closely, we �nd that

only those horizontal curves representing more than 50% of particles step downwards,

and also the stepdowns are more appreciable only when the particle amplitude becomes

larger. This phenomenon happens because of some halo particles residing at the very

edge of the beam. They behave like a separate beam and feel the space charge force from

the core of the beam as an external force. Since this is not the space charge self-force of

the beam halo, our discussion of the irrelevance of the incoherent tune does not apply

to these particles.

5.4.2 Two Dimensions

Machida [8] performed two-dimensional space charge simulations of the SSC Low Energy

Booster by including quadrupole error forces. The horizontal bare tune was �xed at

�0x = 11:87 while the vertical bare tune �0y varied from 11.95 to 11.55. The maximum

incoherent tune shift was kept �xed at j��sc yj = 0:33 with a half-integer stopband 0.02.

The beam simulated had a bi-Gaussian distribution. The threshold for emittance growth

was found to be roughly 11.63, when the incoherent tune had already passed the half-

integer resonance of 11.50. An incoherent tune shift of 0.33 for a bi-Gaussian distributed

beam is the same as an incoherent tune shift of 0.33/2=0.165 of an equivalent uniform

beam. According to Eq. (5.81), the incoherent tune shift of an equivalent uniform beam is

0.199, or 2�0:199 = 0:398 for a bi-Gaussian beam. If we include the stopband, meaning

that the half-integer resonance will start at 11:50 + 0:02 = 11:52, the incoherent tune

shift of an equivalent uniform beam is 0.1687, or 2 � 0:1687 = 0:337 for a bi-Gaussian

beam. The number is very close to the incoherent tune shift of the 0.33 input into the

simulations.

In other two-dimensional simulations, Machida and Ikegami [9] also demonstrated

that it was the coherent rather than the incoherent tune shifts that determine the

instability of a beam. Some results are illustrated in Fig. 5.3. In the simulations, the

horizontal coherent quadrupole tune hits the integer 13 when the beam intensity reaches

� 15 A. We do see that the horizontal emittance increases rapidly around the beam

intensity of 15 A. The vertical coherent quadrupole tune hits the integer 11 when the

beam intensity is raised to around 13 to 15 A. Around those intensities, large increase

in vertical emittance is evident in the plots. However, we do not see any growth of

emittance when the coherent quadrupole tunes cross half integers. The simulations were

performed using beams with the water-bag distribution, the K-V distribution, and the
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parabolic distribution. As is seen in the plots, the results do not depend much on the

beam distribution.

Figure 5.3: (color) Tune of coherent quadrupole mode (left) and rms emittance at

512 turns after injection (center and right) versus beam intensity. Upper �gures

show results in the horizontal plane while lower ones show results in the vertical

plane. Rms emittance growth is observed when either the horizontal or vertical

coherent quadrupole tune crosses an integer. (Reproduced from Ref. [9]).

5.5 Application to Synchrotrons

Let us apply what we have learned to some low-energy synchrotrons. For the Fermilab

Booster with an injection energy of 400 MeV and round beam, the bare tunes derived

from the lattice are �0x = 6:70 and �0y = 6:80. The nearest half-integer is 6.5. Thus,

if the half-integer resonance arises from the incoherent motion of the beam particles,

the largest incoherent space charge tune shift allowed will be j��sc xj = 0:20. If the

resonance comes from one of the coherent quadrupole envelope modes hitting the half-

integer, the largest incoherent space charge tune shift allowed becomes{ j��sc xj=0:296

{We can also make the rough estimate of assuming the two betatron bare tunes are equal, i.e.,

�0x � �0y � 6:70. Then the incoherent space charge tune shift according to Eq. (5.82) is j��sc xj �
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or j��sc yj = 0:291. These numbers are obtained from the matrix of Eq. (5.80) by

substituting 1

2
� = 6:5 for the eigentune and solving for j��sc xj. On the other hand, from

the experimentally measured beam size, the calculated incoherent space charge tune shift

is 0.40, which de�nitely exceeds the result from incoherent motion and agrees more or less

with the result from the coherent mode. So far the estimation has been based on uniform

distribution. If the distribution were bi-Gaussian, the largest incoherent space charge

tune shift allowed would become j��sc xj=2�0:296=0:592 or j��sc yj=2�0:291=0:582

instead for particles at the center of the beam with small amplitude betatron oscillations.

Similar computations are performed for various low-energy synchrotrons, for which

the beams are mostly round and the distribution uniform. The results are tabulated in

Table 5.2. We see that for all the synchrotrons listed, the space charge tune shifts com-

puted from experimentally measured beam sizes exceed those derived from incoherent

particle motion and are close to those derived from the coherent modes.

Table 5.2: Estimated inocherent space charge tune shifts for various low-energy

synchrotrons. The incoherent space charge tune shifts are derived from the exper-

imentally measured beam size (3rd column), the assumption that the half-integer

resonance comes from the incoherent motion of the beam particles (4th column),

and the assumption that the half-integer resonance comes from a coherent envelope

mode (5th column). We see that the values from experiments exceed those from

incoherent motion and agree mostly with those from the coherent modes.

j��sc xj=j��scyj
Synchrotron Bare tunes from from incoh from coherent

�0x=�0y experiment motion motion

KEK Booster 2.17/2.30 0.23 0.17 0.25/0.24

FNAL Booster 6.70/6.80 0.40 0.20 0.30/0.29

ISIS 3.70/4.20 0.40 0.20 0.31/0.27

AGS 8.75/8.75 0.58 0.25 0.33/0.33

AGS Booster 4.80/8.75 0.50 0.30 0.46/0.25

CERN PS 6.22/6.22 0.27 0.22 0.29/0.29

CERN PS-2 6.22/6.28 0.36 0.22 0.31/0.31

j��sc xj �
4

3
� 0:2 = 0:267.
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5.6 Exercises

5.1. Supply the missing steps in transforming the one-dimension envelope equation

from Eq. (5.30) to the normalized form of Eq. (5.54). You may need the de�nition

of the betatron function

�x�
00
x

2
� � 0x

2

4
+ �2

xKx(s)� 1 = 0 ; (5.88)

where the prime denotes derivative with respect to s, the distance along the accel-

erator ring, and Kx(s) is the focusing strength of the external quadrupoles.

5.2. Show that the incoherent space charge tune shift ��sc x of a one-dimension beam

uniformly distributed in the x direction and in�nite in the y and s directions is

given by

2�0x��sc x =
2�r0�R

2

3�2x̂
; (5.89)

where the beam has extent between �x̂, � is the particle density per unit area in

the y-s plane, r0 is the classical particle radius,  and � are the Lorentz parameters,

and R is the mean radius of the accelerator ring.

5.3. Veri�ed the expression for hxExi given by Eq. (5.48) by computing this quantity

for a round beam with (1) uniform distribution and (2) bi-Gaussian distribution.

5.4. Derive the incoherent space charge tune shifts for the various synchrotrons listed

in the last column of Table 5.2 when the intensity of the beam having uniform

distribution is increased so that the �rst coherent envelope mode reaches the half-

integer resonance.
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